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ABSTRACT

Classifiers are seen here as systems in which input feature
values are used with fitted or learned functions that produce
output values which are interpreted as probabilities or fuzzy
degrees of class membership, or in which output values are
used with cut-off decision rules to choose bivalent class
membership.  Two complementary measurements for
evaluating training, validation, testing, and deployment phase
performances in human, mechanical, and computerized
classifiers are proposed here.  These measurements are
derived from samples of classifier output values paired with
their corresponding known probabilistic, fuzzy, or bivalent
classification values.  The first measurement is the area under
the ROC plot.  The second is the separation index newly
introduced here.  Both of these measurements are easy to
understand and to compute.  It is proposed that they be
considered standard metrics for evaluating and comparing
classifier intelligence.

Keywords: classifiers, intelligence, performance
metrics, intelligence metrics, area under the ROC plot,
separation index, knowledge discovery from data, ensembles

1.  Introduction

The task of a human, mechanical, or computerized
classifier is to use a set of values, x's, for certain
particular attributes to classify an entity or event into
one or more categories or classes.  Classification may
be bivalent, where the classifier output, y, is either
negative (y=0) or positive (y=1), probabilistic where
the output is a probability (0≤ y≤ 1) that the entity or
event is associated with the bivalent positive class, or a
fuzzy degree of membership (0<y<1) reflecting partial
degree of membership in the positive class.  As
classification tasks become increasingly non-trivial
with many attributes and highly complex nonlinear and
discontinuous   relationships   among  attribute   values
and classification outcome values, it may be said, in
the spirit of classical artificial intelligence,  that
classifiers that perform well are demonstrating
intelligence.  Metrics are needed to measure this
intelligence in order to describe and compare classifier
performances.  Here, two such metrics that

complement each other are proposed.  The first is the
fairly well known area under the ROC plot.  The
second is a new index called the "separation index."
Both metrics may be employed for bivalent,
probabilistic, and fuzzy classifier outcomes.  They
have immediate use with present day classifiers and
they have potential future use with anticipated large
ensembles of autonomous intelligent classifier agents
engaged in data mining for knowledge discovery
purposes by means of perpetual dynamic exploration
of large and expanding data bases.

2.  Classifiers and Intelligent Metrics

A basic classifier is illustrated in Figure 1.

Figure 1.  Illustration of a basic classifier that maps a
fixed finite set of input parameter values, x's, into an
output parameter value, y, where y is a measure of
bivalent, probabilistic, or fuzzy classification of an
entity or event with respect to some specific class, C.

       Its purpose is to map a fixed finite set of input
parameter values, x's, associated with an individual
entity or event, E, into an output parameter value, y,
where y is a measure of association of E with respect
to some specific class, C associated with the output
node that produces y.  Basic classifiers may be
designed so that y-values reflect bivalent, probabilistic,



or fuzzy classification associations.  Classifiers may
have more than one output node where each node is
associated with a different outcome class.  The
intelligence metrics described here may be applied to
each separate output node.  Experience suggests,
however, that in polyvalent or n-class classifier
applications it may be wiser to construct n basic
classifiers, each having a single output node, instead of
constructing one classifier with n output nodes.  This is
because the performance of internal mathematical
"features" is reduced when these features must be
"shared" in the computation of multiple outputs.

       There are many mathematical methods for
developing classifiers.  These range from simple
function fitting techniques to highly sophisticated
statistical and neural network ensemble modeling.  The
intelligence performance metrics described here, the
area under the ROC plot and the separation index, are
applicable to all underlying mathematical models used
in classifiers.  Classifiers undergo training, learning, or
fitting - terms generally used interchangeably.
Classifiers also undergo validation, testing, and
deployment phases.  The intelligence metrics described
here are intended for use in all of these phases.

3.  Classifier Output  Interpretation

A classifier should be designed from the outset to
perform bivalent, probabilistic, or fuzzy classifications,
and used in the same way throughout training,
validation, testing, and deployment phases.  The
fundamental epistemological and mathematical
differences among these three classifier types must be
clearly understood at the outset of designing a
classifier.  These differences are based on the
understanding and interpretation of the output
parameter, y, and this interpretation is based on the
meaning given to the class assignment data used in
developing and using the classifier.

       If membership data is bivalent, meaning that
entities or events are perceived as belonging discretely
to one or the other of the positive or negative bivalent
classes, then y-values must also be interpreted as
bivalent, negative or positive, usually expressed as 0
and 1 respectively.  Classifiers trained with bivalent
class data will often produce continuous output values
for y on these intervals during all classifier phases.
When this is the case, threshold decision rules are
needed to force bivalent classification.  If membership
data is probabilistic, meaning that entities or events are
perceived as belonging probabilistically to the positive
pole of the bivalent classes, then output y-values may
be interpreted directly as probabilities of positive class
membership.  For example,  y= .8 could mean there is
a .8 probability that the patient is a member of the
bivalent set “bivalent diabetics.”  If membership data is

fuzzy, meaning that individual entities or events are
perceived to be partly in the positive class and partly in
the negative class, then output values should also be
interpreted as fuzzy membership values [1].  In this
case, y=.8 could mean that the patient has a .8 degree
of membership in the fuzzy set "fuzzy diabetics."

       Again, once a classifier system is designed to be
bivalent, probabilistic, or fuzzy, it should be
considered that way during training, validation, testing,
and deployment phases. The interpretation of the
classifier output must remain consistent  throughout all
of these phases.

4.  The Area Under the ROC Plot

The first proposed metric of classifier intelligence is
the area under the ROC plot.  It is derived from ROC
methodology which has origins in signal detection
theory [2,3].  ROC methodology addresses forced
choice bivalent classifications [4-7].  The "receiver" is
a human, mechanical, or computerized agent
performing the bivalent classification.  "Operating
characteristic" refers to the performance of the
receiver.  The central feature of ROC methodology is
the ROC plot constructed from bivalent frequency
distribution data specified as independent variable
values, y, paired with dependent known classification
values yk where yk=0 means full membership in the
negative class and yk=1 means full membership in the
positive class.  A basic bivalent classifier developed,
for example, with neural network methodology, will
have an output variable, y, with continuous values on
the 0-1 interval.  For purposes of applying ROC
methodology, this output variable y is the independent
variable which when coupled with the known
classification values, yk=0 and yk=1 provides the data
with which to compute a ROC plot.  Figure 2 shows
simulated bivalent frequency distributions of output
values from a neural network classifier at the
completion of a successful training operation.  In this
figure, the abscissa variable is y, the continuous neural
network classifier output variable.  The ordinate is the
frequency at which various y values occur in both the
negative class where yk=0 (grey bars), and in the
positive class where yk=1 (black bars). It is apparent
from these contrasting distributions that there are
approximately  the same total number of negative
cases as there are positive cases.  This means that the
prevalence or incidence of positive events is
approximately .5 in the training data.  Special
consideration needs to be given when there is a
mismatch of prevalence in data used in training and
deployment.  Additional special consideration needs
to be given to misclassifications cost differences,
meaning differences in false positive and false negative
costs.  Prevalence and misclassification cost issues are



very important.  They have been addressed elsewhere,
however more work is needed  [8-12].

Figure 2.  Bivalent frequency distributions of output
values, y,  from a classifier at the completion of a
successful classifier neural network training operation.

       The   ROC   plot    is    a    plot    of    sensitivity
versus 1-specificity as the independent variable
traverses its full range.  In the case of the classifier, the
independent variable is y, the output of the classifier,
and it ranges continuously from 0 to 1.  Specificity is
computed as the normalized (scaled to 1) integral of
the negative distribution.  Sensitivity is computed as
the normalized integral of the positive distribution
subtracted from 1.  The ROC plot computed from the
data summarized in the frequency distributions in
Figure 2 is the  ROC plot  with an area of .97 hugging
the upper left corner of the grid in Figure 3. It is
displayed in this figure with 4 other ROC plots that
were constructed at earlier stages in the training
process.  These ROC plots are empirical ROC plots
meaning that they are directly computed from the y, yk

paired data.  Since sensitivity and specificity are
computed independently, ROC plots are, in a sense,
prevalence independent.

       The area under the ROC plot is readily computed
by numerical integration.  This area is a statistic.  It is
the probability that a randomly drawn event associated
with the positive class will have a higher value for the
independent variable, y, than a randomly drawn event
associated with the negative class.  In statistics it is
computed as the Mann-Whitney version of the
Wilcoxan statistic.  The ROC plot area ranges from 0,
which indicates full separation with positive cases
having lower y values than the negative cases, through
.5 which indicates the poorest performance (no
separation of bivalent classes), to 1 which indicates the
full separation of bivalent classes with positive cases
having the higher y values.  Classifiers with high ROC
plot area values may be further differentiated in
performance by means of the separation index.

Figure 3.  ROC plots from simulated neural network
classifier output data after 0, 400, 600, 800, and 1000
training cycles.

5.  The Separation Index

The second measure of classifier intelligence is the
separation index introduced here.  The separation
index is a measure of the difference between the
median y-values of the positive and negative frequency
distributions.  It is computed by first determining the
median y-value for all negative cases, nmed, and the
median y-value for all positive cases, pmed.  Subtracting
nmed from pmed yields a value on the -1 to +1 interval.
To map this value onto the 0 to 1 interval, 1 is added
and the result is divided by 2.  The formula for the
separation index (SI) is as follows:

                   SI  =  (pmed – nmed + 1) / 2                    (1)

6.  Index Complementarity

The ROC plot area and the separation index both
directly measure class separation whereas other
measurements used in developing classifiers generally
measure the fitness of the data to the underlying
function.  For example, the root mean squared (RMS)
error measures the square root of the sum of the
squares of the differences between known, yk,  and
fitted, y,  outcome class values.  This is clearly not a
direct measure of separation.  Since the task of a
classifier is separation and since performing this task
well requires intelligence, the ROC plot area and the
separation index may be justifiably thought of as
measures of intelligence since they both directly
measure separation.  Furthermore these indices
complement one another.  For example, if a ROC plot



area of 1.00 indicating full separation is obtained, the
separation index may be used to further differentiate
training states or to compare classifiers.  If poor ROC
plot areas are obtained, the separation index could
again indicate better or worse separation in comparing
different training states or different classifiers.

7.  Indices for All Classifier Phases

The ROC plot area and the separation index may be
computed for the training, validation, testing, and
deployment phases of classifiers for purposes of
classifier evaluation and inter-classifier comparisons.
Plotting values of these indices after each training
cycle provides a graphical representation of the rate of
intelligence development (“learning curves”) during
training as well as other characteristics of training,
such as stalling, nonmonotonicities, and reversals.
Figure 4 illustrates training plots for 1000 training
cycles in the simulated experiment referred to earlier,
and Table 1 contains a partial tabular listing of the data
plotted in Figure 4.

Figure 4.  ROC plot area and separation index values
in a simulated 1000 cycle neural network classifier
training operation.  (These might be thought of as
“learning curves.”)

What is being simulated here is the training of a neural
network in which individual training cases are selected
by bootstrap sampling [13-16]. This random sampling
with replacement strategy is what gives rise to early
higher variances tapering off to later lower variances
for both indices over the training cycles.  Experience
suggests that this kind of sampling provides a weight
jogging effect  which aids in avoiding local minima
entrapment.  Also of note in this simulation is the
observation that index values idealistically approach an
asymptotic maximum.  Perhaps other new metrics for

intelligence could be devised for training plot features
such as variance tapering and asymptotic convergence.

       If validation is pursued concurrently with training,
perhaps use of the area under the ROC plot and the
separation index as new intelligence metrics will yield
new ideas about training termination.  Perhaps the
intelligence metric values derived from testing data
evaluated after training and validation will be
considered the appropriate values to use for comparing
classifiers.  Monitoring intelligence metric values
periodically during deployment operations would be a
good way to assure that the trained classifier is holding
up and that environmental data sources are not drifting
too far from the original data populations associated
with training, validation, and testing data sources

      TRAINING          ROC PLOT        SEPARATION
         CYCLE                  AREA                  INDEX

0 .58 .57
100 .56 .54
200 .62 .59
300 .57 .57
400 .62 .60
500 .65 .60
600 .74 .66
700 .80 .70
800 .88 .75
900 .97 .80

1000 .97 .80

Table 1.  ROC plot area and separation index values in
a simulated 1000 cycle neural network classifier
training operation.

8.  Fuzzy and Probabilistic Membership

ROC methodology can be easily extended to include
fuzzy and probabilistic classifications [17,18].  This is
done by simply considering every entity or event as
having relationship to both the negative and the
positive bivalent poles of the class associated with the
dependent variable, yk.  Let the membership
association value be yk for the positive class, and 1-yk

for the negative class.  Thus, a fuzzy or probabilistic
membership value of yk=.82 corresponds with a .82
association value in the positive class and a .18
association value in the negative class.  This simple
generalization subsumes classical ROC methodology,
because yk=1.00 corresponds to an association value of
1.00 in the positive class and 0 in the negative class,
and yk=0 corresponds to an association value of 0 in
the positive class and 1.00 in the negative class.  After
positive and negative class association values are
determined, sensitivity and specificity values are
computed from the resulting bivalent frequency



distributions and the ROC plot is computed from these
sensitivity and specificity values as before. The area
under the ROC plot is computed by numerical
integration as before or by a weighted Mann-Whitney
version of the Wilcoxan statistic with tied data [18].
Likewise, the separation index is derived from the
resulting bivalent frequency distributions as before.

9.  Discussion

Using metrics such as those proposed here to measure
classifier intelligence for evaluating and comparing
classifier systems will become increasingly important
in environments where large cadres of automated
intelligent agents will be used in knowledge  discovery
from data efforts by continuously data mining large
and expanding data bases.  Efficient algorithms for
computing intelligence metrics will be needed in these
environments.

       Intelligence measurement could perhaps be only
one kind of measurement appropriate for evaluating
intelligent systems such as classifiers.  Design
simplicity, computational ease, computational speed,
and the capability to map knowledge produced with
machine intelligence to human understandable
knowledge are other important features for which
metrics could be developed.  Developing such
measures could be an important step foreword in the
progression of machine intelligence.  Perhaps this step
will help expand human knowledge and understanding
in a more general way.  By understanding intelligence
and related characteristics in machines, humans may
come to better understand these characteristics in
humans.

10. Conclusions

Two complementary metrics, the area under the ROC
plot and the separation index, have been shown to be
effective measures of intelligence in all phases of
classifier systems that produce bivalent, fuzzy, or
probabilistic classifications.  It is proposed that these
metrics be standardized as measures of classifier
intelligence for purposes of evaluation and
comparison.  The need for fast algorithms for assessing
intelligence has been suggested as well as the need for
measuring other attributes of classifiers and other
intelligent agents, specifically attributes related to
parsimony, and human knowledge derivation. The
need for more work on prevalence and
misclassification cost issues in classifiers has also been
mentioned. It has been suggested that understanding
anthropomorphized characteristics in machines may
promote understanding of related characteristics in
humans.
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